## **PXI Studio**

Application software for advanced RF digital communications test



# A passion for performance.

Vector Signal Generator and Vector Signal Analyzer /Spectrum Analyzer application software with options for wireless data and cellular standards:

- GSM/EDGE
- UMTS/HSUPA
- CDMA2000 and 1xEV-DO Rev A
- WiMAX
- WLAN
- Bluetooth (+ EDR)

Ideal for R&D and test system engineering applications using Aeroflex 3000 Series PXI modular RF instruments.

## INTRODUCTION

PXI Studio is a Windows<sup>™</sup> software application for use with the Aeroflex 3000 Series. This highly flexible application allows you to simultaneously generate and characterize complex modulated RF signals. Measurement tools enable difficult problems to be tracked down quickly and help simplify design proving or test system development.

PXI Studio installed in a PC and connected with your PXI hardware modules forms a tightly coupled high performance laboratory test instrument. PXI Studio presents a single integrated graphical user interface to control multiple configurations of Aeroflex PXI 3000 Series modules. As standard it provides Signal Generator and/or RF Digitizer control with general purpose spectrum or time domain analysis for RF component testing or alignment of radio communications transceivers.

Optional measurement plug-ins extend measurement support to cater for a wide variety of communication standards within the same application framework making the test solution extremely versatile. In each case the plug-in extends the capabilities to provide power, spectrum and modulation analysis with results displayed in user configurable tiles. A variety of trace displays are provided as appropriate to the communication standard each permitting close examination of underlying problems beyond the scope of traditional measurement instruments. When used synchronously with complex signal generation, stimulus and response component measurements or complete transceiver characterization can be accomplished with ease.

All measurement processing is performed within the host PC. Performance is therefore directly enhanced as PC processing power improves and thereby prolongs the productive life of the system.

PXI Studio plug-ins each have an associated remote programming interface (.dll with .net assemblies) for use in a wide variety of application development environments such as National Instruments LabView/LabWindows CVI/Test Stand, Microsoft Visual Studio and Visual Basic. In addition, each measurement suite provides hardware independent low-level function libraries enabling more experienced programmers the option to maximize test system flexibility by coding PXI hardware control and measurement functions independently.

## STANDARD PXI STUDIO PLUG-INS

PXI Studio automatically determines how many and what type of logical instruments can be formed from the PXI hardware resources connected. Any number of logical instruments may be formed and controlled simultaneously from the same application making PXI Studio adaptable to whatever 3000 Series PXI modules are in use. Three basic logical instrument types are defined RF Digitizer, Signal Generator and RF Combiner. The performance and operating range of each is determined by which module variant is used.

| E DVI Devises                            | View Details   | Generate Frequency Standard Setting Auto Configure System |  |    |                                  |
|------------------------------------------|----------------|-----------------------------------------------------------|--|----|----------------------------------|
| 5 PXI Devices were found in your system. |                |                                                           |  | L- |                                  |
| Logical Instruments                      |                |                                                           |  |    |                                  |
| SigGen1                                  | Σ<br>Combiner1 | 1010<br>Digitizer1                                        |  |    | Greate Instrument                |
|                                          |                |                                                           |  |    | Remove                           |
|                                          |                |                                                           |  |    |                                  |
|                                          |                |                                                           |  |    | Frequency Standard               |
|                                          |                |                                                           |  |    | Configured<br>Prequency Standard |

Figure 1. PXI Studio hardware configuration

## **Digitizer Plug-in**

The digitizer plug-in is a general purpose interface to control any 3030 Series digitizer and output or plot the acquired signal in a variety of ways. A zoom feature allows you to examine the signal viewed in fine detail without acquiring new data.

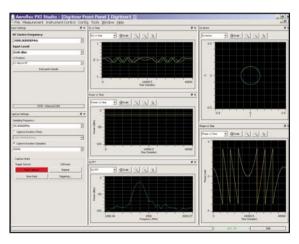



Figure 2. RF Digitizer screenshot

The digitizer plug-in provides a drag and drop facility to view the spectrum in one tile for a user defined time window from another tile as shown in Figure 3 or to simultaneously view multiple narrows spans of a single spectrum in detail.

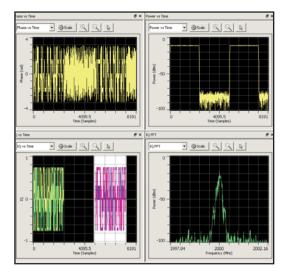



Figure 3. Using drag and drop to see time gated spectra

## Signal Generator Plug-in

The signal generator plug-in is a general purpose interface to control any 3020 Series digital signal generator. RF output and modulation settings, triggering and list mode operation are just a few of the primary controls provided to the user.

| IF settings         |                      |      |             | User Calibration  |  |
|---------------------|----------------------|------|-------------|-------------------|--|
| requency:           | 2000.000000          | 배요 늪 |             | Detector Zero     |  |
| evet                | 0.00 dBm             | ÷    | RF On       | 1Q Spot Cal       |  |
| eveling Mode:       | Auto                 | -    | Gate RF OFF | Advanced          |  |
| MS Level:           | 0.02 街               | -    |             | IQ B/W Correction |  |
| ARE<br>Selected Fil |                      |      |             |                   |  |
|                     | n Files/Aeroflez/JQC |      | role I 💌    |                   |  |

Figure 4: Signal Generator plug-in main screen

## **Combiner Plug-in**

The combiner plug-in is used to couple up to 3 instruments together at a single calibrated reference port. For example to provide connection to a full duplex transceiver, to test amplifier intermodulation products or it can be used simply as a switch to share PXI resources.

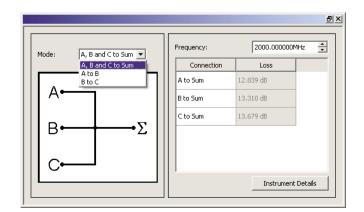



Figure 5: RF Combiner plug-in

## Spectrum Analyzer Plug-in

The spectrum analyzer plug-in enables spectrum and time domain measurements to be performed within PXI Studio on acquired I & Q data from 3030 Series RF digitizers.

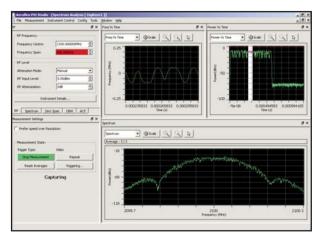



Figure 6: Spectrum Analyzer plugin screenshot

Spectrum measurements can be made over a maximum span width of 200 MHz with continuously variable resolution bandwidths from 1 Hz to 10 MHz (limited by span).

The spectrum analyzer supports measurement of occupied bandwidth and adjacent channel power where up to 99 channels can be specified each with arbitrary channel spacing and channel bandwidth.

The spectrum analyzer provides display traces of power, frequency and phase versus time as well as power spectrum.

## Optional system specific measurement plug-ins

Each optional measurement plug-in provides a complete set of measurement functions to characterize the RF parametric performance of components and devices in accordance with the requirements of the relevant communications standard.

## **GSM/EDGE MEASUREMENT SUITE**

A complete suite of measurement functions to characterize GSM and EDGE mobile transceiver RF performance using procedures as defined in 3GPP 51-010-1 V5.2.1 sections 13.17.1-4 and 13.14.2

- TX average power and burst power profile
- GMSK phase error (peak and RMS)
- 8PSK EVM, origin offset suppression
- 95th percentile EVM
- Frequency error
- Output radio frequency spectrum
- Receiver BER measurement

The GSM/EDGE measurement suite supports analysis of all major GSM/EDGE Tx and Rx characteristics including average RF power, burst profile, modulation quality (either as phase error or error vector magnitude), frequency error, spectrum due to modulation and switching and Rx BER (using loopback methods as defined in ETSI TS 100 293-GSM 04.14). EDGE signals can be further characterized in terms of Origin Offset Suppression and 95th Percentile EVM.

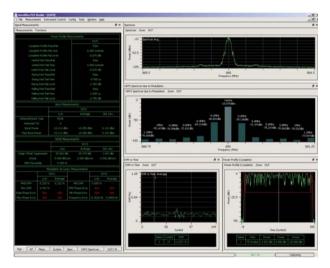



Figure 7: GSM/EDGE plug-in screenshot

The PXI Studio plug-in enables analysis of either Normal or Access burst types with automatic detection of modulation type and training sequence (TSC). Results are provided as both numerical tabular or graphical trace displays.

## UMTS MEASUREMENT SUITE

A complete suite of measurement functions to characterize UMTS mobile transceiver performance in accordance with ETSI TS 34.121 (3GPP release 6).

- · Maximum output power
- · Frequency stability
- ACLR
- Spectrum emission mask
- Phase discontinuity
- CCDF
- Occupied bandwidth
- EVM (Peak and RMS)
- Phase and amplitude errors \*
- IQ skew and gain imbalance \*
- Carrier leak
- Origin offset
- Tx slot timing error
- Code domain power
- · Peak code domain error
- Demodulated symbol data for active channels
- Enhanced physical channels and HS-DPCCH
- Receive sensitivity (BER) using loopback \*

The UMTS measurement suite enables the measurement of all major 3GPP W-CDMA UE transceiver parameters including RF power, ACLR (adjacent channel leakage ratio), occupied bandwidth, spectrum emission mask, modulation accuracy, frequency stability, code domain power and peak code domain error and receiver sensitivity.

The PXI Studio plug-in provides a variety of trace displays including constellation diagram, code domain power and spectral mask.

Set up for UMTS uplink measurement requires only user entry of DPCCH slot format 3 and scrambling code. Active channel detection can be set automatically or defined by the user. Measurements can then be made for any user specified or a random timeslot 0 to 14.

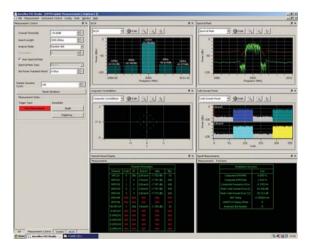



Figure 8. UMTS plug-in typical screenshot \* From version 3.2.0 onwards

## CDMA2000 AND 1XEVDO REV A MEASUREMENT SUITE

A complete suite of measurement functions to analyze cdma2000 and 1xEVDO Rev A signal characteristics in accordance with the requirements of 3GPP2 C.S0011-A release C and C.S0024-A version 2.0 for reverse link transmissions.

- cdma2000 RC1 to 4 and 1xEV-DO rev A reverse link analysis
- Channel power
- Total power
- ACPR
- Phase Error and Amplitude Error\*
- Spurious emissions (spectral emission mask)
- Composite modulation accuracy (RHO and EVM)
- QPSK EVM (cdma2k RC3 and RC4, 1xEVDO)
- QPSK origin offset
- Code domain powers and PCDE
- Frequency error

The cdma2000 and 1xEV-DO reverse link measurement suite enables precision characterization of power, modulation and spectral parameters for both cdma2000 rev C and 1xEV-DO rev A reverse link transmissions.

Trace displays are provided for de-scrambled code domain powers for both cdma2000 RC3/4 and 1xEV-DO channels and constellation diagrams.

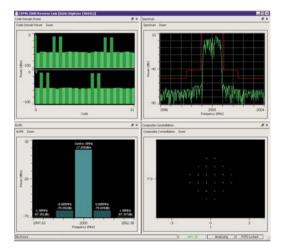



Figure 10. CDMA 2000 plug-in typical screenshot

\* From version 2.4.0 onwards

## WIMAX MEASUREMENT SUITE

A complete suite of measurement functions to characterize WIMAX signals in accordance with the requirements of IEEE 802.16e (2005) and the WiMAX Forum.

- Transmit power
- Spectral mask
- Occupied bandwidth
- EVM (all, data only, pilots only)
- Frequency error
- Gain imbalance, Skew\*
- CCDF\*
- Symbol/chip clock frequency error
- Carrier leakage\*
- Spectral flatness

The WiMAX measurement suite enables measurement of all major signal characteristics of WiMAX CPE devices including power, modulation accuracy and spectral parameters.

Configuration for each zone and burst within the sub-frame is made easily configurable using point and click/drag and drop. Color is used to differentiate between modulation types.



## Figure 11. Zone Definition

Complex EVM results can be viewed as a function of sub-carrier or symbol for each burst in a multi-burst frame. Markers can be used to link between EVM vs sub-carrier and sub-carrier EVM vs symbol views.

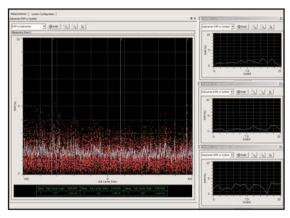



Figure 12. EVM Vs Subcarrier with marker inspection

Spectral measurements are displayed and checked against standard compliant or user defined spectral mask.

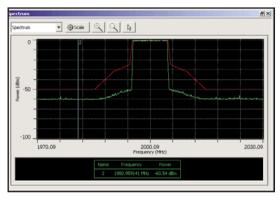



Figure 13. Spectral mask

Spectral flatness results provide a pass/fail indication independently for each portion of the mask and check the relative level between successive sub-carriers as well as providing trace data with markers.

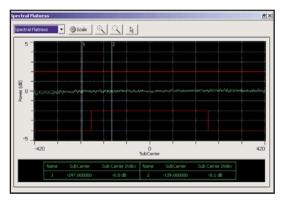



Figure 14. Spectral flatness

\* From version 2.2.0 onwards

## WLAN MESUREMENT SUITE

A comprehensive suite of measurement tools enabling the analysis of all WLAN OFDM and DSSS RF signal characteristics in accordance with the requirements of IEEE 802.11a,b PMD 1999 and IEEE 802.11g PMD 2003.

- Transmit power
- Transmit burst length
- Transmit power on, off timing
- Spectral mask
- · Occupied bandwidth
- · Frequency tolerance
- Symbol / chip clock frequency tolerance
- Carrier suppression/leakage\*
- Skew\* / Gain imbalance\*
- Modulation accuracy (EVM)
- Spectral flatness

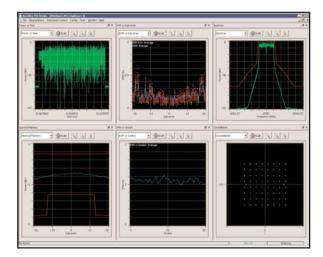



Figure 15. WLAN plug-in typical screenshot

Data rates and corresponding modulation and encoding formats up to 54 Mb/s are supported. Modulation format, data rate and modulation type are all determined automatically from preamble and header decoding thus requiring no user set-up making using the measurement library easy to operate and integrate within a test application.

Measurements may be performed with/without compensation for pilot time, amplitude and phase tracking enabled.

## BLUETOOTH (+EDR) MEASUREMENT SUITE

A suite of measurement functions to characterize Bluetooth and Bluetooth EDR radio signals in accordance with the requirements of Bluetooth Specification 1.2 / 2.0 / 2.0 + EDR / 2.1 / 2.1 + EDR revision 2.1E1(2008).

The Bluetooth measurement suite enables fast measurement of key signal characteristics of Bluetooth and Bluetooth EDR signals such as burst power, PSK modulation accuracy, initial and maximum frequency error and origin offset.

- · Burst position and power
  - EDR relative Tx power
- Spectrum
  - -20 dB bandwidth
  - Power density
  - Occupied bandwidth
  - Adjacent channel power
  - EDR spurious emissions
- Modulation characteristics
- Initial carrier frequency tolerance
- Carrier frequency drift and drift Rate
- Burst profile
- Modulation accuracy
- CW measurements

The Bluetooth measurement suite is suitable for characterizing devices operated in test mode. Measurement results for burst length, position, rise and fall times and power are provided for the entire packet as well as the individual GFSK and PSK modulated elements within the packet. For PSK modulation, the DEVM is reported together with max frequency error and origin offset. Time domain trace displays are provided for burst power, GFSK frequency deviation and DEVM. Additionally PSK modulation can be viewed as a constellation diagram.

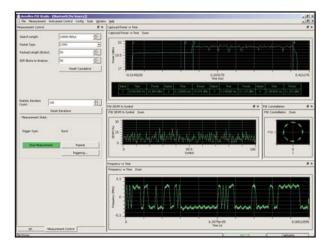



Figure 16. Bluetooth plug-in screenshot

## SPECIFICATIONS

## GENERAL

## **Operating System**

PXI Studio is designed for operation under Windows<sup>®</sup> 2000 (service pack 4)/Windows<sup>®</sup> XP (service pack 2) and 32-bit Vista.

#### **Required Memory**

512 Mbytes minimum, 1024 Mbytes recommended

## Minimum graphical display resolution

Minimum 1024 x 768

## Other

Aeroflex 3000 Series modules require NI VISA version 3.1 or later (NI Visa 4.2 or later under Windows<sup>®</sup> Vista).

Aeroflex 3000 Series module drivers version 5.4.0 or later

#### Power Level Accuracy

See 3030 Series data sheet

## SPECTRUM ANALYZER PLUG-IN

All specifications are defined when used in conjunction with the 3030 Series PXI RF digitizer.

## Frequency Span

Variable between 2 kHz to 200 MHz and zero span

Resolution 1 Hz

#### Resolution Bandwidth

Variable between 1 Hz to 10 MHz (depending on span)

#### Resolution 1 Hz

## Window Type

NEBW: Gaussian 3 dB: Gaussian fixed: Blackman Harris 5 term Zero Span Time

#### Up to 333 seconds

Resolution 4 ns

#### MEASUREMENTS

#### Channel Power and Adjacent Channel Power

Adjacent channels: 2 upper and 2 lower or user defined up to 99 Channel filter alpha: 0.0 to 1.0 Channel spacing: up to 15 MHz

Channel width: up to 25 MHz

## Occupied Bandwidth (OBW)

Percentage range: 1% to 99.99%

#### N Peaks

Frequency and power output for up to 10 signal peaks sorted in order of decending power

#### Average Power

The RMS average power for all IQ samples

#### Markers

4 markers plus delta marker

## Marker Functions

Marker power and frequency with peak search, next peak, peak track Power and time

Frequency and time

#### Traces

Live, avg, max. hold

Spectrum trace, power versus time trace, frequency versus time trace, phase versus time trace^{(1)}

Text results summary

## GSM/EDGE

All specifications are defined when used in conjunction with the 3030 Series PXI RF digitizer operating in any GSM band between 400 MHz and 2000 MHz. GSM BER measurements additionally require a 3020 Series PXI digital RF signal generator

## CONFIGURATION

## System Type

GSM400 GSM700, GSM850, GSM900, DCS1800, PCS1900

## Frequency

ARFCN 0 to 1023 (valid range dependent on system type selected) or Hz

## Level (DUT Output)

PCL (power control level) 0 to 31\* or Manual dBm

\*valid range and corresponding dBm value is system type dependent

#### Burst Type

GMSK: Auto or Manual (Normal / Access)

8PSK: Normal

#### TSC

Uplink: Auto or Manual (0 to 7)

Path Loss Correction

Tx and Rx (dB)

## Acquisition Trigger Source

Immediate (free run), Burst (video), Ext (PXI trigger bus, local bus, star trigger, LVDS, TTL)

#### Synchronisation (Auto Burst Detection)

Burst Detection threshold (dB)

Search length (ms)

## Burst Timing Latency Compensation

0 to ±78.125 symbols

#### BER Loopback (requires 302x)

Mode A/B or C

Number of frames 1 to 1000

#### Measurement Display types

Captured power versus time

Burst power versus time with/without masks

Burst spectrum (RBW 10 kHz, 30 kHz, 100 kHz)

Phase error versus time

EVM versus time

ORFS (Spectrum due to Modulation)

ORFS (Spectrum due to Switching)

#### MEASUREMENTS:

#### GSM / EDGE AVERAGE BURST POWER

The transmitter output power is the average value of the power over the time that the useful information bits of one burst are transmitted

Fast Burst Power is measured without midamble synchronization.

#### Indication

GMSK Average burst power in dBm

EDGE, Current Avg power, long term average power or estimated long term average power dBm

Detected burst type and TSC

Burst Timing Error (symbols)

## <sup>(1)</sup> From version 1.6.0 onwards For the very latest specifications visit **WWW.aeroflex.com**

#### GSM / EDGE POWER PROFILE

#### Indication

Pass/fail indication with respect to a single burst power template for mobile station (MS)

Values with closest proximity to mask or worst case failure for the complete, rising edge, falling edge and useful parts of the burst

Power versus time traces

Rising/falling edge

Useful part

Complete burst

#### Dynamic Range

Typically -80 dBc (for input levels > 0dBm)

## Accuracy (rising falling edges)

Level: Typically  $\pm 0.1 \text{ dB}/10 \text{ dB}^{(1)}$  (relative to peak power)

#### Time accuracy <0.5 μs

Accuracy (useful part)

Level: Typically ±0.02 dB (relative to peak power)

Time accuracy <0.1 symbol

#### **GMSK MODULATION**

GMSK phase error measurements performed for a single slot

#### Phase Error Range

0 to 10° RMS

0 to 40° peak

## Indication

Results are expressed as numerical values for RMS + Peak phase error

Peak phase error versus time

#### Accuracy

Typically  $\pm 0.5^{\circ}$  rms phase error  $\pm 1.0^{\circ}$  peak phase error

#### **8PSK MODULATION**

The minimum RMS magnitude of the error vector is calculated for a single slot.

#### Burst Type

Normal only

#### EVM Range

0 to 20% EVM RMS

0 to 40% EVM peak

#### Indication

rms EVM %, peak EVM %, 95th percentile EVM %, origin offset suppression, and droop

#### Accuracy

±0.4% RMS ±1% peak

#### Offset Origin Suppression Range

>20 dB to 60 dB (floor)

Offset Origin Suppression Accuracy

Typically ±0.5 dB at 33 dB

## FREQUENCY ERROR

Measurements are performed for a single slot.

The frequency error measured is the difference between the input signal and the nominal 3030 tuned frequency.

## Frequency Error Range (2)

Typically ±300 kHz GMSK (GSM)

Typically ±100 kHz 8PSK (EDGE)

#### Frequency Error Accuracy

 $\pm 5 Hz + (Tx freq x freq standard error)$ 

## SPECTRUM DUE TO MODULATION & SWITCHING

This measurement determines the peak power and the time gated average power at up to 20 specified frequency offsets.

#### Burst Type

Normal

Range offset

Up to ±10 MHz

## Measurement Range (typical)

#### Spectrum due to modulation

|                   | (     | GMSK  | 8     | PSK   |
|-------------------|-------|-------|-------|-------|
| Carrier Frequency | 1 GHz | 2 GHz | 1 GHz | 2 GHz |
| Frequency Offset  | dBc   | dBc   | dBc   | dBc   |
| 100 kHz           | -76   | -70   | -73   | -67   |
| 200 kHz           | -81   | -75   | -78   | -72   |
| 250 kHz           | -82   | -76   | -79   | -73   |
| 400 kHz           | -83   | -77   | -80   | -74   |
| 1.8 MHz           | -84   | -79   | -81   | -76   |
| 6 MHz             | -85   | -79   | -82   | -76   |
|                   |       |       |       |       |

#### Spectrum due to switching

|                   | Gl    | VISK  | 88    | PSK   |
|-------------------|-------|-------|-------|-------|
| Carrier Frequency | 1 GHz | 2 GHz | 1 GHz | 2 GHz |
| Frequency Offset  | dBc   | dBc   | dBc   | dBc   |
| 400 kHz           | -73   | -67   | -70   | -64   |
| 1.8 MHz           | -74   | -69   | -71   | -66   |

## Indication

Table of values;

Reference power (dBm), frequency offset (Hz) and level (dBc) relative to reference power

#### Accuracy

Typically ±0.05 dB/10 dB<sup>(1)</sup>

BER, BER II, RBER II, FER

#### Measurement Results

Mode C burst loopback

Number of bits examined

Number of error bits found

Bit Error Rate (%)

#### Mode A/B Speech loopback

Number of frames examined

Erased Speech Frames

Speech Frame Erasure Rate (%)

#### Notes

<sup>(1)</sup> Excluding the effects of noise

<sup>(2)</sup> From version 2.4.0 onwards

All specifications are defined when used in conjunction with the 3030 series PXI RF digitizer operating in all WCDMA 3GPP FDD bands.

#### CONTROL PARAMETERS

#### Scrambling Code

0 to 16777215

#### Power Control Mode

Disable/Drive to level

## Analysis Mode

Random or specific slot

Specific Slot Number: 0 to 14

#### DPCCH slot format

0 to 3

#### SLOT POWER

#### Measurement Range

Up to +30 dBm at digitizer input

#### Indication

Average Power in dBm

Slot Power in dBm (random or specific)

#### OCCUPIED BANDWIDTH

Measurement of the bandwidth containing 99% of the total power of the transmitted spectrum

#### Indication

Hz

#### Accuracy

<100 kHz

#### SPECTRUM EMISSION MASK

The spectral density of the transmitted signal should lie within the relevant spectral mask for each WCDMA 3GPP FDD band or a user defined mask.

#### Measurement BW

30 kHz and 1 MHz depending on frequency offset

#### Measurement Range

±12.5 MHz

#### Indication

Global Pass / Fail

The worst case dBc level value and its corresponding frequency relative to the mask

#### Traces

FFT power spectrum and selected mask values

## PHASE DISCOINTINUITY

Phase difference between measured slot and the preceeding slot

#### Indication

Degrees, slot number

#### ADJACENT CHANNEL LEAKAGE RATIO

ACLR due to modulation is the ratio of the channel power to the power measured in the upper and lower adjacent and alternate channel.

## Number channels

Time domain: 1 to 5

Frequency domain: 1 to 5

#### Dynamic Range

Residual noise in 3.84 MHz BW: typically better than -68 dB

#### Indication

Reference channel power dBm

1st upper and lower adjacent channel power dBc

2nd upper and lower adjacent channel power dBc

#### Accuracy

 $<\pm$  0.05 dB/10 dB<sup>(1)</sup>

#### FREQUENCY STABILITY

The frequency error measured is the difference between the input signal and the nominal 3030 tuned frequency

#### Frequency Error Range

 $\pm 7$  kHz ( $\pm 3$  kHz for HSPA)

#### Frequency Error Accuracy

< ±(10 Hz + (Freq Standard Error x Transmitter Freq))

## TRANSMIT MODULATION

## Modulation Accuracy

Modulation accuracy results are provided for either composite modulation or for QPSK modulation. Composite EVM results are provided for either a specific or random slot number.

#### Composite EVM range

0 to 20% RMS

0 to 40% Peak

## Residual Error

#### <± 1%

#### Composite Modulation Results

Magnitude error peak/rms (2)

in dB

Phase error peak/rms (2)

in degrees

#### IQ gain imbalance (2)

in dB

IQ skew (2)

in degrees

Carrier leak

in dB

## HS-DPCCH Timing Offset

#### QPSK EVM range

0 to 10% RMS

0 to 20% Peak

#### Residual Error

Typically  $< \pm 1\%$ 

#### QPSK Origin offset (carrier leak)

range

#### 0 to 20%

Residual Error

Typically  $< \pm 1\%$ 

## QPSK Modulation Results

#### Magnitude and Phase Error

QPSK magnitude and phase component errors are available both with and without origin offset removed.

## For the very latest specifications visit **WWW.aeroflex.com**

#### Range

Magnitude: 0 to 15 %

Phase: 0 to 10 degrees

## Residual Error

Magnitude: < 1% typically

Phase: <5 degrees typically

#### 10 gain imbalance

in dB

#### 10 Skew

in degrees

## Frequency Error

in Hz

#### DEMODULATED SYMBOLS

Symbol data is available for each active channel

#### Channel Types

DPCCH DPDCH1 to 6 HS-DPCCH E-DPCCH E-DPDCH1 to 4

#### CHANNEL DETECTION RESULTS

Spreading Factor

Code number

Gain factor

Number of hits

#### TX SLOT TIMING ERROR

Measured relative to an external trigger input with a result expressed in samples

## CODE DOMAIN POWER

Code domain power is computed providing dBc readings for 256 orthogonal channels.

#### Indication

Code domain power versus code number

#### PEAK CODE DOMAIN ERROR

Code domain errors are computed providing dBc reading for 4 orthogonal channels. The peak code domain errors are defined as the maximum values for the 4 code domain errors. The measurements interval is 1 slot (2560 chips).

#### Indication

Peak code domain error for I and Q channels

CCDF Complimentary cumulative distribution function

#### Trace

Peak to average power (dB) versus probability (%) BER (2)

#### Measurement Results

Bit error rate (%) Number of bits examined Number of bits in error Number of blocks examined Number of blocks in error Block error rate (%)

#### Setup

Number of DTCH blocks: Up to 100

Number of bits to compare: Up to 24,400

Reference data pattern type: all ones, all zeros, PRBS PN9 or PN15 Notes

(1) Excluding the effects of noise

<sup>(2)</sup> From version 3.2.0 onwards

## CDMA2000 AND 1XEVDO REV A

All specifications are defined when used in conjunction with the 3030 series PXI RF digitizer operating in cdmaOne, cdma2000 and 1xEVDO band classes BC0 to BC12.

## CONTROL PARAMETERS

## Long Code Mask

Long code mask range: 0 to 4,398,046,511,103

#### Radio Configuration Mode (cdma2000 only)

RC1/RC2 or RC3/RC4

#### Slot number (1xEVDO only)

0 to 15

#### POWER MEASUREMENT

## **Channel Power**

The channel power is the power measured in the 1.23 MHz bandwidth. Channel power is measured concurrent with ACPR measurement

#### Average Power

The broadband average power is measured for a user defined segment.

#### Bursted Power

For bursted signals, the peak power is measured together with burst duration, burst position, power on and power off times.

#### Indication

Channel power, average power, burst power in dBm

Burst duration and burst position in samples

Power on time and power off time in seconds

## ADJACENT CHANNEL POWER RATIO MEASUREMENT

ACPR is the ratio of the channel power to the power measured at frequency offsets outside the assigned cdma channel. Reference channel measured in 1.23 MHz, offset measured in 30 kHz.

## Offsets

4 fixed or 4 user defined

## Fixed offsets

±885 kHz. ±1980 kHz

#### User offsets

Up to  $\pm 4$  MHz

## Dynamic Range

-82 dBc

#### Indication

Ref Channel Power in dBm (1.23 MHz channel bandwidth)

Offset power in dBc (30 kHz RBW)

#### Accuracy

Typically 0.05 dB/10 dB<sup>(1)</sup>

#### SPECTRAL EMISSION MASK

The power spectrum of the transmitted signal is compared to a mask.

#### Mask Type

Cellular, PCS, user defined

## Indication

Pass/fail

Frequency + dBr mask value with closest proximity to mask

Spectral trace + mask trace

Number of failed points

#### Accuracy

Typically 0.05 dB/10 dB(1)

#### TRANSMIT MODULATION

#### Modulation Accuracy

The modulation accuracy can be measured for either composite RHO, EVM as per 3GPP2 C.50011\_A or 3GPP2 C.S0033-A or QPSK EVM (RC3 & 4, 1xEV-D0 only).

1xEV-DO composite RHO is computed for default or user channel settings. When set to user channel settings, RHO is measured only on the selected channel subset.

The modulation accuracy is a measure of the difference between the measured waveform and the theoretical modulated waveform (the error vector).

The minimum measurement interval for composite rho / EVM is 500  $\mu s$  (cdma200 RC1/2), 3.2 ms (cdma200 RC3/4), 1xEV-D0 or user defined.

For QPSK EVM the measured interval can be user defined in chips from 256.

#### COMPOSITE RHO

Mode(1xEVDO only)

Random / Specific slot 0 to 15

rho Range

0.9 to 1

#### Indication

32 bit floating point

#### Accuracy

Better than  $\pm 0.003$  for rho values between 0.9 and 1.0

#### Amplitude Error (1)

in dB

#### EVM & QPSK EVM

#### Composite EVM range

0 to 20% RMS

0 to 40% Peak

#### QPSK EVM range

0 to 10% RMS

0 to 20% Peak

#### Residual Error

Typically 1%

Magnitude error peak/rms (2)

#### in dB

Phase error peak/rms (2)

in degrees

QPSK ORIGIN OFFSET (CARRIER LEAK)

#### Range

0 to 20%

#### Residual Error

Typically 1%

#### FREQUENCY ERROR

The frequency error is derived from modulation quality measurement and is the frequency relative to the 3030 tuned frequency.

#### Frequency Error Range

RC1-2: ±5 kHz RC3-4: ±2 kHz 1xEV-DO: ±2 kHz QPSK: ±10 kHz

#### Frequency Error Accuracy

Typically  $\pm$  (10 Hz + (Freq standard error x transmitter freq))

#### CODE DOMAIN POWER (RC3/RC4, 1XEVDO)

Code domain power is a measure of the power in each code channel of a CDMA channel. Code domain power gives the distribution of signal energy among the code channels, normalized by the total signal energy.

#### Indication

Pilot channel power (dB)

Data channel power (dB)

Ack channel power (dB), (1xEVDO only)

DRC channel power (dB), (1xEVDO only)

### Trace

Power dBm versus code channel (dB)

#### Peak Code Domain Error

Code domain error is a measure of the code domain distribution of error power, provided by a code domain power measurement of the error signal. Peak code domain error is the largest power in the error.

#### Indication

Peak Code Domain Error I (dB) Peak Code Domain Error Q (dB)

#### <sup>(1)</sup> From version 2.4.0 onwards

(2) CDMA2000 only

#### WIMAX

All specifications for accuracy and range relate to performance when used in conjunction with a 3030 Series PXI RF digitizer. CONFIGURATION Standards supported IEEE 802.16e (2005) OFDMA FRAME SETUP Frame Length 2.5, 4.0, 5.0, 8.0, 10.0, 12.5, 20 ms Nominal Bandwidth 1.25, 3.5, 4.375, 5, 7, 8.75, 10, 14, 15, 17.5, 20, 28<sup>(1)</sup> MHz <sup>1</sup> Supported in 3030A, 3030C, 3035, 3035C FFT size 128, 512, 1024, 2048 Guard Period 1/4. 1/8 . 1/16. 1/32 Subframes (link direction) Uplink, Downlink Downlink preamble Index 0 to 11.3 Uplink cell ID 0 to 31 ZONE SETUP Туре PUSC Number of Zones Downlink: 8 Uplink: 3 Length 1 to max. symbol count set by frame length and guard period Offset 0 to max. symbol count - 1 set by frame length and guard period Permutation Base Downlink: 0 to 31 Uplink: 0 to 69 BURST SET UP Burst type Downlink, Uplink Uplink PUSC: Normal data Downlink PUSC: Normal data Burst edit operations Add, delete Burst definition Single/multiple Modulation: OPSK, 16QAM, 64QAM Burst Type: Normal data Modulation<sup>(2)</sup> BPSK (pilots), QPSK, 16QAM, 64QAM Number of symbols<sup>(1)</sup> 1 to n where n is the number of symbols in the zone

#### Number of sub-channels<sup>(1)</sup>

1 to n where n is the number of subchannels in the zone set by the zone type and FFT size

#### Symbol offset(1,2)

0 to n - 1 where n is the number of symbols in the zone

#### Sub-channel offset(1,2)

0 to n - 1 where n is the number of subchannels in the zone set by the zone type and FFT size

<sup>1</sup> For each burst in a multi-burst zone

<sup>2</sup> non overlapping

MEASUREMENT SET-UP

#### Channel Equalisation Methods:

Channel estimation sequence only; channel estimation sequence and pilots

#### Channel Estimation Sequence Only

Downlink - using preamble

Uplink - no equalization

#### Channel Estimation Sequence and Pilots

Downlink - using preamble and pilot sub-carriers of the data symbols in the sub-frame

Uplink - Pilot sub-carriers of the data symbols of the sub-frame.

#### PILOT TRACKING

Phase Tracking

On/Off

#### Amplitude Tracking

On/Off

Symbol Time Tracking

On/Off

#### BURST POWER MEASUREMENTS

#### TRANSMIT POWER

The Peak and RMS power is measured for a single UL or DL subframe.

Indication

Power vs time trace

#### OBW

Bandwidth containing 99% of total of the transmitted power

Indication

Hz

Accuracy

Typically <100 kHz

## SPECTRAL MASK

The spectral density of the transmitted signal should lie within the spectral mask.

The mask is frequency aligned to the maximum spectrum density.

## Mask Type

IEEE802.16e (2005) 10 MHz, 20 MHz,

WiMAX Forum 5 MHz, 10 MHz masks,

#### User defined

## Measurement BW

User defined or as determined by mask type selected

#### Measurement Range

80 MHz

#### Indication

Global Pass/Fail

The worst case dBc level value and its corresponding frequency relative to the mask are reported

#### Traces

FFT power spectrum and mask values

#### MODULATION ACCURACY

The error vector magnitude (EVM) is the magnitude of the IQ vector at the decision point measured relative to the ideal constellation point.

#### RCE (residual constellation error) / EVM (error vector mangnitude)

Composite RCE / EVM (rms), (all sub-carriers and symbols within a zone)

EVM (rms) for a single burst within a zone

EVM (rms) for a single sub-carrier

EVM (rms) all data sub-carriers (within a burst or zone)

EVM (rms) for a specific symbol on a specific sub-carrier within a burst

EVM (rms) all pilot sub-carriers (CPE-common pilot error)

EVM (rms) for unmodulated subcarriers

#### Indication

%/dB

## IQ gain imbalance (1)

in dB

#### IQ skew (1)

in degrees

#### Traces

EVM (rms) vs. sub-carrier for a specific burst or for all symbols EVM (rms) vs. symbol for a specific burst or for all sub-carriers Constellation for a specific burst or for all sub-carriers

#### Accuracy

Typically <-40 dB residual EVM

#### FREQUENCY TOLERANCE

Lock Range (% of sub carrier spacing)

#### ±20%

Indication

#### Ηz

Accuracy

As per reference frequency

TX CENTRE FREQUENCY LEAKAGE / RF CARRIER SUPPRESSION

dB

SYMBOL / CHIP CLOCK TOLERANCE

#### Range

±50 ppm

Indication

ррт

clock error vs time

## Accuracy

As per reference frequency **SPECTRAL FLATNESS** 

#### Mask Type

WiMAX Standard 802.16 2005

## User defined

Indication

Mask Pass/Fail Mask Upper Pass/Fail

Mask Lower Pass/Fail

Adjacent sub-carrier Pass/Fail

#### Trace

dBr values for each sub-carrier

<sup>(1)</sup> From version 2.2.0 onwards

#### WLAN

All specifications for accuracy and range relate to performance when used in conjunction with a 3030 series PXI RF digitizer operating in any ISM band up to 6 GHz. The following are preliminary specifications for WLAN.

#### CONFIGURATION

The WLAN measurement suite assumes the measured signal includes a correctly formatted PSDU containing valid header information in order to perform demodulation.

Automatic setting of System Type (OFDM/DSSS/DSSS-OFDM), Data Rate, Modulation Type is decoded from header information.

#### Compensation

Pilot time tracking, on/off

Pilot amplitude tracking, on/off

Pilot phase tracking, on/off

#### Burst Profile type

Average power or peak power

Measurement results

Live, average, min hold, max hold, std dev

#### BURST POWER MEASUREMENTS

#### TRANSMIT POWER

The Peak and RMS power is measured for a single PPDU.

Indication

dBm

#### BURST LENGTH

The burst length is the time between the rising and falling edge of a single PPDU burst.

## Indication

μS

Rising / Falling Edge Time (802.11b and g)

Measures the time taken for the burst power of a single PPDU to change between 10% and 90% of it's value (peak or rms).

## Indication

Global Pass/Fail

Ramp up Pass/Fail

Ramp up time in  $\mu s$  (10% to 90% points)

Ramp down Pass/Fail

Ramp down time in  $\mu$ s (90% to 10% points)

Burst position µs relative to trigger point

#### POWER VERSUS TIME TRACE OBW (802.11A AND G ONLY)

Bandwidth containing 99% of total of the transmitted PPDU spectrum in 34  $\ensuremath{\text{MHz}}$ 

#### Indication

Ηz

#### Accuracy

Typically <100 kHz

#### SPECTRAL MASK

The spectral density of the transmitted PPDU signal should lie within the spectral mask:

The mask is frequency aligned to the maximum spectrum density.

Mask types 802.11a 802.11b/g

User defined

#### Measurement BW

100 kHz

#### Measurement Range

80 MHz

#### Indication

Global Pass / Fail

The worst case dBc level value and its corresponding frequency relative to the mask

Spectral trace display with mask

#### Accuracy

Typically ±0.05 dB/10 dB

Assumes common 3030 Series attenuator settings for reference and offset measurements

## ADJACENT CHANNEL POWER

The power measured in the upper and lower adjacent and alternate channels relative to the power in the reference channel

#### Reference Channel bandwidth

22 MHz

#### Adjacent & Alternate Channel bandwidth

±11 MHz, ±22 MHz

#### Indication

1st lower dBc

2nd lower dBc

1st upper dBc

2nd upper dBc

#### Measurement Range

Typically 62 dB for IEEE802.11a/g 54 Mbps QAM

Typically 65 dB for IEEE802.11b 11 Mbps CCK

#### Accuracy

Typically ±0.05 dB/10 dB

Assumes common 3030 Series attenuator settings for reference and offset measurements

#### MODULATION ACCURACY

The error vector magnitude (EVM) is the magnitude of the IQ vector at the decision point measured relative to the ideal constellation point.

#### EVM

Composite EVM (% rms) and RCE (rms dB)

EVM (% rms) and RCE (rms dB) all data carriers

EVM (% rms) and RCE (rms dB) all pilot carriers

EVM (Peak) - 802.11b/g only

#### Indication

Constellation display

Trace of EVM values versus sub carrier or symbol number

System Type, Modulation Type, Data Rate, Number of PSDU bits/symbols

#### Accuracy

Typically <40 dB residual EVM

IQ gain imbalance (1)

in dB

IQ skew (1)

in degrees

Carrier leak

in dB

#### FREQUENCY TOLERANCE

Lock Range

±50 ppm

Indication

Ηz

#### Accuracy

As per reference frequency

TX CENTRE FREQUENCY LEAKAGE / RF CARRIER SUPPRESSION

Indication

dB

SYMBOL / CHIP CLOCK TOLERANCE

Range

±50 ppm

#### Indication

ррт

## Accuracy

As per reference frequency

SPECTRAL FLATNESS (802.11 A AND G ONLY)

Indication

Pass/Fail

Upper Pass/Fail

Lower Pass/Fail

Trace display of dBr versus sub carrier and mask

<sup>(1)</sup> From version 1.0.0 onwards

## **BLUETOOTH & BLUETOOTH EDR**

Performance is specified over the frequency range 2400 MHz to 2483.5 MHz when used in conjunction with any 3030 Series RF digitizer and where applicable any 3020 series RF signal generator.

Measurements are performed in accordance with the requirements of Bluetooth Specification 1.2/2.0/2.0 + EDR/2.1/2.1 + EDR.

#### CONFIGURATION

#### Channel Number/Frequency

0 to 78 or Hz

## Packet Types

DHx, 2-DHx, 2-EVx, 3-DHx (where x = 1,3, or 5)

Payload Length

Up to 1021 bytes

Synchronisation (Demodulation)

RF burst and PO

EDR blocks (x 50 symbols)

1 to 99999

Tx Loss

In dB

Triggering

See digitizer plug-in

#### **BLUETOOTH MEASUREMENTS**

#### **Output Power**

Measurements: Average power across a burst and Peak power within a burst (dBm)  $% \left( dBm\right) =0$ 

## 3030A/3035:

 $<\pm0.5$  dB, typically  $\pm0.3$  dB

#### 3030C/3035C:

 $<\pm 0.7$  dB, typically  $\pm 0.3$  dB

## Power Density

Measurements: Peak power density (dBm) per 100 kHz

#### TX Output Spectrum -20 dB Bandwidth

Measurements: -20 dB bandwidth (kHz)

#### TX Output Spectrum Adjacent Channel Power

Measurements: Adjacent channel power(s) in  $\pm N$  channels

#### Modulation Characteristics

Measurements:  $\Delta favg$  (Hz),  $\Delta fmax$  (Hz)

Packet type: longest supported (DH1, DH3, DH5)

#### Initial Carrier Frequency Tolerance

Measurements: ICFT, carrier behaviour at burst turn on

#### Carrier Frequency Drift

Measurements: carrier drift (per packet), drift rate in payload (per 50  $\mu$ s)

Packet Type: DH1, DH3, DH5

Payload: 10101010

#### BLUETOOTH EDR MEASUREMENTS

Packet Types

2-DHx, 2-EVx, 3-DHx

#### EDR Relative Transmit Power

Measurements:

- a) GFSK (header) Avg power
- b) PSK payload Avg power

c) relative power between a) and b)

#### EDR Carrier Frequency Stability and Modulation Accuracy

Measurements: (taken per packet and EDR Blocks)

Worst case carrier frequency error ( $\omega_{o}$ ) for all packets (Carrier frequency stability)

Worst case carrier frequency error  $(\omega_i)$  for all blocks

 $(\omega_{a} + \omega_{i})$  for all blocks

DEVM (rms & peak)

99% DEVM

Measurement uncertainties:

Frequency error, typically 2 Hz excluding frequency reference error

#### EDR In-band Spurious Emissions

Measurements: Adjacent channel powers dBm / dBc in  $\pm N$  channel (Max N =5)

#### GENERAL BURST ANALYSIS

#### Measurement results

Burst position (leading  $P_{u}$  –3 dB point relative to start of burst)  $\mu$ s

Burst length (between P - - 3 dB points) µs

Burst power ( $P_{au}$  and  $P_{\mu\nu}$ ) dBm

Rise time (10%  $P_{u}$  to 90%  $P_{u}$ )  $\mu$ s

Fall time (90% P to 10% P ) µs

#### Measurement Uncertainty

Burst length, Rise time, fall time <2 samples

Burst power. As per specified 303x level accuracy

#### OCCUPIED BANDWIDTH

Bandwidth containing 99% of total transmitted burst power

#### Indication

in Hz

#### Measurement Range

1 MHz

### TRACES

Captured I&Q power (dBm) versus time

Burst power (dBm) versus time

GFSK frequency offset versus time

DPSK DEVM (%) versus symbol

DPSK measured and ideal constellation diagrams

Burst spectrum

## **ORDERING**

GSM/EDGE

PXI Studio is supplied as standard with plug-ins for RF Digitizer, Signal Generator, RF Combiner and Spectrum Analyzer.

Optional measurement plug-ins may be purchased with the 303x at time of order or purchased as an upgrade to the 303x.

| When purchased with a 303x, order as:        | 3030 option 100 |
|----------------------------------------------|-----------------|
| When purchased as an upgrade, then order as: | RTROPT100/3030  |
| UMTS uplink                                  |                 |
| When purchased with a 303x, order as:        | 3030 option 101 |
| When purchased as an upgrade, then order as: | RTROPT101/3030  |
| CDMA2000 and 1xEVDO Rev A                    |                 |
| When purchased with a 303x, order as:        | 3030 option 102 |
| When purchased as an upgrade, then order as: | RTROPT102/3030  |
| WLAN                                         |                 |
| When purchased with a 303x, order as:        | 3030 option 103 |
| When purchased as an upgrade, then order as: | RTROPT103/3030  |
| WIMAX                                        |                 |
| When purchased with a 303x, order as:        | 3030 option 104 |
| When purchased as an upgrade, then order as: | RTROPT104/3030  |
| Bluetooth                                    |                 |
| When purchased with a 303x order as:         | 3030 option 106 |
| When purchased as an upgrade, then order as: | RTROPT106/3030  |
| when purchased as an upgrade, then order as. | RIROPI100/3030  |
|                                              |                 |

#### **CHINA Beijing**

Tel: [+86] (10) 6539 1166 Fax: [+86] (10) 6539 1778

**CHINA Shanghai** Tel: [+86] (21) 5109 5128 Fax: [+86] (21) 5150 6112 FINLAND Tel: [+358] (9) 2709 5541 Fax: [+358] (9) 804 2441

FRANCE Tel: [+33] 1 60 79 96 00 Fax: [+33] 1 60 77 69 22

As we are always seeking to improve our products, the information in this document gives only a general indication of the product capacity, performance and suitability, none of which shall form part of any con-tract. We reserve the right to make design changes without notice. All trademarks are acknowledged. Parent company Aeroflex, Inc. ©Aeroflex 2009.

#### KOREA

SPAIN

Tel: [+49] 8131 2926-0 Tel: [+82] (2) 3424 2719 Fax: [+49] 8131 2926-130 Fax: [+82] (2) 3424 8620 **SCANDINAVIA** Tel: [+852] 2832 7988 Tel: [+45] 9614 0045 Fax: [+852] 2834 5364 Fax: [+45] 9614 0047

INDIA Tel: [+91] (0) 80 4115 4501 Fax: [+91] (0) 80 4115 4502

JAPAN Tel: [+81] 3 3500 5591 Fax: [+81] 3 3500 5592

GERMANY

HONG KONG

## www.aeroflex.com

Tel: [+34] (91) 640 11 34

Fax: [+34] (91) 640 06 40

Tel: [+44] (0) 1763 262277 Fax: [+44] (0) 1763 285353

**UK Cambridge** 

info-test@aeroflex.com

#### **UK Stevenage**

Tel: [+44] (0) 1438 742200 Fax: [+44] (0) 1438 727601 Freephone: 0800 282388 USA Tel: [+1] (316) 522 4981 Fax: [+1] (316) 522 1360

Toll Free: 800 835 2352





Our passion for performance is defined by three attributes represented by these three icons: solution-minded, performance-driven and customer-focused.

Part No. 46891/391, Issue 1, 07/09